AUTHOR	Joreskog. Karl G.
TITLE	A General Method tor Estimating a Linear Structural Equation System.
INSTITUTION	Educational Tezting Service, Princeton. N.J.
REPORT NO	RB-70-54
PUB DATE	Sep 70
NOTE	43 p .
EDRS PRICE	EDRS Price MP-\$0.65 $\mathrm{HC}-\$ 3.29$
DESCRIPTORS	Algorithns, Analysis of Covariance, Analysis of
	Variance, \#Computer Programs, Critical Path Method.
	Economics, Goodness of Fit. *athematical Models,
	Mathemstics, Psychology, Sciences. *Standard Erior
	of Measurement. *Statistics. Tests
IDEstifiers	* Measurenent Errors

ABSTAACT
A general method for estimating the unknown coefficients in a set of linear structural equations is described. In its wost general form the method allous tor both errors in equations (rosiduais, disturbances) and errors in variables (errors of measurement, observational errors) and yrelds estinates of the residual variance-covariance matrix and the measurement error variances as yell as estimates ot the unknown coefficients in the structural equations. provided all these parameters are identitied. Two special cases of this ganeral method are discussed separately. One is when there are errors in equations but no eriurs if variables. The other is when thers are errors in variables but no errors in equations. The methods are applied and illustrated using artificial. econoaic and psychological data. (Author)

A GENERAL METHOD FUR ESTIMATING A LINEAR S'CRUCTURAL
EQUATION SYSTEM

Karl G. Jöreskog

US DEAMTMENT OF HEALTH EDUCATION AWtLIAE
 OFFICEOF LOUCA:ION

THIS DOC"MINT HAS BEER REPROJUCED

OFGANDETION DOG NATNGIE POMTS OF
TIFN CA OPANIONS STATED JONDI NELES
SA RIGT REPRISENTORFICIAL
CATION POS! IION OR POLICY

This Eulletin is draft for interoffice circulation. Corrections and suggestions ior revision ar: solicited. The Bulletin should not be cited as a reierence without the specific permission of the author. It is automatically superseded upon formal publication of the material.

Educational Testing Service
Princeton, New Jersey
September 1970

A General Method for Estimating a Linear Structural
Equation System
Karl. G. Jdreskog
Educational Testing Service

Abstract

A gerieral method for estimating the unknown coeificients in a set of linear structural equations is described. In its most general form the method allows fer botin errors in equations (residuals, disturbances) and errors in variables (errors of measurement, observational errors) and yields estimates of the residuai variance-covariance matrix and the measurement error variances as well as estimates of the unknown coefficients in the structural equations, provided all these farameterc are identified. Two special cases of this general method are discussed separately. One is when there are errors in equations but no errors in veriables. The other is when the: 2 are errors in variables but no errors in equations. The methods are applied and illustrat: using arificial, ecoromic and psychological data.

```
A General Method for Estimating a Linear Structural
Equation System*
1. Introduction
```

We shall describe a general method for estimating the unknown coefficients in a set of linear structural eauations. In its most general form the method will allow for both errors in eque ions (residuals, disturbances) and errors in variables (errois of measurenent, observational errors) and will yield ectimates of the residual variarice-covariance matrix and the measurement error variances as well as estimates of the unknowl coefficients in the structural equacions, provided ali these parameters are identificd. Arter giving the resujts for this general caoe, two special cases will be considered. The first is the case when there are errors in equations but no errors in variables. This case has been studied extensively by econometricians (see e.g., Goldberger, 1964, Chapter 7). The second case is when there are errors in variables but no errors in equations. Models of this kind have been studied under the name of path analysis $b y$ biometricians (see e.g., Turner \& Stivens, 1959). suciologists (see e.g., Blalock, 1964) and psychologists (Werts \& Linn, 1970).

It is assumed that the observed variables have a multinornal distribution and the unknown parameters are estimated by the marimun likelihood methoa. The estimates are computed numerically using a nodification of the fietcherPonell minimization algorithm (Fletcher \& Powell, 1963; Gruvaeus \& albeskog, 1970). Standard errors of the est"mated parereters nay be obtained by computing the inverse of the information matrix. A computer proeram,

[^0]LISREL, in $\operatorname{HORTRAN}$ IV, that performs all the recessary computations has been witten and tested out on the IBM 360/65; a write-up of this is under preparation (J̈reskog \& ven Thillo, 1970).

In the first special case referred to above, where there are no error: of measurement in the observed variables the seneral method to be presented is equivalent to the full information maximut likelihood (FIML) method of Koopmans, Rubin and Leipnik (1950) also calied full information least generalized residual variance (FILGRV) metnod (Goldberger, 1964, Chapter 7), provided that no constraints are imposed on the residual rariance-covariance matrix and the variance-covariance matrix of the independent variables. However, with the general method described here, it is possible to assign fixed values to some elements of these matrices and also to have equality constraints among the remaining elements.

2. The General Model

Consicier random vectors $\eta^{\prime}=\left(\eta_{1}, \eta_{2}, \ldots, \eta_{m}\right)$ and $\xi^{\prime}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)$ of true dependent and independent variables, respectively, and the following system of linear structura? relations

$$
\begin{equation*}
B \eta=\Gamma \xi+\xi \tag{1}
\end{equation*}
$$

where $\underset{\sim}{B}(m \times m)$ ard $\underset{\sim}{\Gamma}(n \times n)$ are coefficient matrices and ${\underset{\sim}{\prime}}^{\prime}=\left(\zeta_{1}, \zeta_{2}, \ldots\right.$, ζ_{m}) is a random vector of residuals (errors in equations, random disturbance terms). Kithout loss of generality it may be assumed that $\varepsilon(\underset{\sim}{\eta})=\varepsilon(\underset{\sim}{\boldsymbol{q}})=0$ and $E(\vdots)=0$. It is furthermore assumed that ξ is uncorrelated with ξ and that $\underset{\sim}{B}$ is nonsingular.

where $\underset{\sim}{\mu}=\varepsilon(\underset{\sim}{y}), \underset{\sim}{v}=\varepsilon(\underset{\sim}{x})$ and $\underset{\sim}{\epsilon}$ and $\underset{\sim}{\delta}$ are vectors of errors of measurement in $\underset{\sim}{y}$ and $\underset{\sim}{x}$, respectively. It is convenient to refer to $\underset{\sim}{y}$ and $\underset{\sim}{x}$ as the observed variables and II and $\underset{\sim}{\xi}$ as the true variables. The errors of measurement are assumed to be uncorrelated sith the true variates and among themselves.

Iet $\Phi(n \times n)$ and $\Psi(m \times m)$ be the variance-covariance matrices of $\underset{\sim}{\xi}$ and $\underset{\sim}{\xi}$, respectively, Θ_{-}^{2} and ${\underset{\sim}{~}}_{\delta}^{2}$ the diagonal niatrices of error variances for $\underset{\sim}{y}$ and $\underset{\sim}{x}$, respectively. Then it fullows, from the above assumptions, that the variance-covariance matrix $\underset{\sim}{\sum}[(n+n) \times(m+n)]$ of $\underset{\sim}{z}=\left(\underset{\sim}{y}{ }^{\prime}, \underset{\sim}{x}\right)^{\prime}$ is

The elements of $\underset{\sim}{\Sigma}$ are functions of the elements of $\underset{\sim}{B}, \underset{\sim}{\Gamma}, \underset{\sim}{G}, \underset{\sim}{v}$, θ_{δ} and θ_{-6}. In applications some of these elements are fixed ard equal to assigned values. In particular this is so for elements in $\underset{\sim}{B}$ and $\underset{\sim}{r}$, but we shall allow for fixed values even in the other matrices. For the remaining nonfixed elements of the six parameter matrices one or nore subse's may have identical but unknow values. Thus parameters in $\underset{\sim}{B}, \underset{\sim}{i}$, $\underset{\sim}{\psi}, \theta_{\sigma}$ and $\underset{\sim}{\theta}$ ara of three kinds: (i) fixed paraneters that rave bcen
assigned given values, (ii) constrained parameters that are unknown but equal to one or more other parameters and (iii) free parameters that are unknown and not constrained to be equal to any other parameter.

Before an attempt is made to estimate a model of this kind, the identification problem must be examired. The identification ploblem depends on the specification of fixed, constrained and free parameters. Under a given
 one and only one $\underset{\sim}{\Sigma}$ but there may be several structures generating the same Σ. If two or more structures jenerate the same $\underset{\sim}{\sum}$, the structures are said to be equivalent. If a parameter has the same value in a.l equivalent structures, the parameter is said to be identified. Tf all parameters of the model are ióentified, the whole model is said to be identified. When a model is identified one can usually find consistent estimates of all its parameters. Sone rules for investigating the identification problem when there are no errors in variables are given by Goldberger (1964, pp. 306-318).

3. Estimation of the General Model

Let ${\underset{\sim}{z}}_{1},{\underset{\sim}{2}}_{2}, \ldots,{\underset{N}{N}}^{z}$ be N observations of $\underset{\sim}{z}:\left(\underset{\sim}{y}{ }^{\prime}, x^{\prime}\right)^{\prime}$. Since no constraints are imposed on the mean vector $\left({\underset{\sim}{u}}^{\prime}, v^{\prime}\right)$ ' the maximum likelihood estirate of this is the usual sample mean vector $\underset{\sim}{\bar{z}}=\left(\bar{y}^{\prime},{\underset{\sim}{x}}^{\prime}\right)$ ' Let
be the usual sample variance-covariance tatrix, partitioned as

The logarithm of the likelihood function, onitting a function of the observations, is giver by

$$
\begin{equation*}
\log L=-\frac{1}{2} N\left[\log \left|\Sigma \sim_{\sim}\right|+\operatorname{tr}\left(\underset{\sim}{S} \Sigma^{-1}\right)\right] \tag{?}
\end{equation*}
$$

This is regarded as a function of the independent distinct parameters in $\underset{\sim}{B}, \underset{\sim}{\Gamma}, \underset{\sim}{D}, \underset{\sim}{\Psi},{\underset{\sim}{\Theta}}_{\delta}$ and ${\underset{\sim}{\theta}}$ and is to be maximized with respect to these, taking into account that some elements may be fixed and some may be constrained to be equal to some others. Maximizing log L is equivelent to minimizing

$$
\begin{equation*}
F=(N / 2)\left[\log \left|\Sigma_{\sim}\right|+\operatorname{tr}\left(\underset{\sim}{S} \Sigma_{\sim}^{-1}\right)\right] \tag{8}
\end{equation*}
$$

Such a minimization problem may be formalized as follows.
Let ${\underset{\sim}{\prime}}^{\prime}=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}\right)$ be a vector of $\underset{\sim}{a l l}$ the elements of $\underset{\sim}{B}, \underset{\sim}{\Gamma}$,
 regarded as a function $F(\underset{\sim}{\lambda})$ of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{p}$, which is continuous and has continuous derivatives $\partial F / \partial \lambda_{s}$ and $\partial^{2} F / \partial \lambda_{s} \partial \lambda_{t}$ of first s.nd second order, except where \sum_{\sim} is singular. The totality of these derivatives is represented by a gradient vector $\partial F / \partial A$ and a symmetric matrix $\partial^{2} F / \partial N \lambda /$. Now let some $p-q$ of the λ^{\prime} s be fixed and denote the remaining $\lambda^{\prime} s$ by π_{1}, $\pi_{\mathrm{c}}, \ldots, \pi_{q}, q \leq p$. The function F is now considered as a furction $G(\underset{\sim}{l})$ of $\pi_{1}, \pi_{2}, \ldots, \pi_{q}$. Derivatives $\partial G / \partial \pi_{\sim}^{r}$ and $\partial^{2} G / \partial \pi_{\sim} \partial \pi_{r}^{\prime}$ are obtained from $\partial F / \partial \lambda$ and $\partial^{2} F / \lambda \lambda \partial \lambda 1$ by omitting rows and columns coryesponding to the fixid A's. Among $\pi_{1}, \pi_{2}, \ldots, r_{q}$, let there be some r distinct parameiers denoted $k_{1}, k_{2}, \ldots, k_{r}, \quad r \leq q$, so that each π_{1} is equal to one and only one k_{j},
but possibly several π 's equal the same κ. Let $\underset{\sim}{K}=\left(r_{i j}\right)$ be a matrix of order $q \times r$ with elements $k_{i, j}=1$ if $\pi_{i}=\kappa_{j}$ and $k_{i j}=0$ otherwise. The function $?$ (or G) is now a function $H(\underset{\sim}{c})$ of $k_{1}, k_{2}, \cdots, k_{r}$ and we have

$$
\begin{align*}
& \partial H / \partial \underset{\sim}{K}={\underset{\sim}{x}}^{\prime}(\partial \mathrm{G} / \partial \pi) \tag{9}
\end{align*}
$$

Thus, the derivatives of H are simple suns of the derivatives of G. The minimization of $\mathrm{A}(\kappa)$ is now a straightforward application of the fletcher-Powell method for which a computer program is available (Gruvaeus \& JBreskog, 1970). This method makes use of a matrix $\underset{\sim}{\mathrm{E}}$, which is evaluated in each iteration. Initially $\underset{\sim}{F}$ is any positive definite matrix approximating the inverse of $\partial^{2} \mathrm{H} / \mathrm{O}_{\sim} \hat{\partial}^{\prime} \hat{r}^{\prime}$. In subsequent iterations E is improved, using the information built up about the function so that ultimately $\underset{\sim}{E}$ converges to an approxination of the inverse of $\partial^{2} H / \partial \partial_{\sim} \kappa^{\prime}$ at the minimum. If there are wiarameters, the number C_{i}^{2} iterations may be excessive, but can be considerably decreased by the provision of a good initial estimate of $\underset{\sim}{E}$. Such an estimate may be obtained by inverting the information matrix

$$
\begin{equation*}
\varepsilon\left(\partial^{2} k / \partial \partial_{n} \mu^{\prime}\right)=K^{\prime} \varepsilon\left(\partial^{2} G / \partial \pi \partial \pi^{\prime}\right) K, \tag{i1}
\end{equation*}
$$

where $\varepsilon\left(\partial^{2} G / \partial \pi^{2} \pi^{\prime}\right)$ is obtained from

$$
\begin{equation*}
\varepsilon\left(\partial^{2} F / \partial \gamma \partial \lambda_{n}\right) \approx \varepsilon\left(\partial F / \partial ? \quad \omega F / \partial \lambda^{2}\right) \tag{12}
\end{equation*}
$$

as described above. When the minimum of H has been found, the inverse of the information matrix may be computed again to oltain standard errors of all the parameters in $\underset{\sim}{*}$. A general method for obtaining the elerents of $\varepsilon\left(\partial F / \partial \lambda \partial F / \partial \lambda^{\prime}\right)$ is given in Appendix $A 2$.

The application of the Fletcher-Powell method roquires formulas for the derivatives of F with respect to the elements of $\underset{\sim}{B}, \underset{\sim}{\Gamma}, ~ \underset{\sim}{\sim} \underset{\sim}{\psi}$, Θ_{δ} und ${\underset{\sim}{\Theta}}$. These may be obtained by matrix differentiation as shown in Appendix A1. Writing $\underset{\sim}{A}={\underset{\sim}{B}}^{-1}, \underset{\sim}{D}={\underset{\sim}{B}}^{-1} \underset{\sim}{1}$ and

$$
B=\left(\begin{array}{ll}
g_{y y} & \Omega_{y x} \tag{13}\\
\Omega_{x y} & \Omega_{x x}
\end{array}\right)=\underline{\varepsilon}^{-1}\left(\underset{\sim}{z}-\frac{s}{n}\right) \varepsilon^{-1},
$$

the derivatives are

$$
\begin{align*}
& \partial F / \partial \Gamma_{\sim}=N\left(A_{\sim}^{\prime} \underline{\Omega}_{y y} \prod_{\sim} \dot{\sim}+A^{\prime} \Omega_{y x} \phi\right) \tag{is}
\end{align*}
$$

$$
\begin{align*}
& \partial F / \partial \pm=N A_{\sim}^{\prime}: \quad A \tag{17}\\
& \mathrm{dF} / \mathrm{OO}_{8}=\operatorname{Ha} \mathrm{AX}_{8} \tag{18}\\
& \partial=/ \partial \theta_{-\epsilon}=N \Omega_{-y y-E} \tag{19}
\end{align*}
$$

In these expressions we have not taken into account that q and i are symetric and that θ_{6} and \overbrace{c} are diagonal ratrices. The orf-diagcnal
zero elements of Θ_{8} and Θ_{ϵ} are treated as fixed parameters and the offdiagonal elements of $\underset{\sim}{\Phi}$ and $\underset{\sim}{\Psi}$ as constrained parameters.

When the maximum likelihood estimates of the parameters have been obtained, the goodness of fit of the model may be tested, in large samples, by the likelihood ratio technique. Let H_{0} be the null hypothesis of the model under the given specifications of fixed, constrained and free parameters. The alternative hypothesis H_{J}. may be that $\underset{\sim}{\Sigma}$ is any positive definite matrix.

Under H_{1}, the maximum of $\log \mathrm{L}$ is (see e.g., Anderson, 1958, Chapter 3),

$$
\log L_{1}=-\frac{1}{2} N(\log |\underset{\sim}{\mid}|+m+n)
$$

Under H_{0}, the maximum oi $\log \mathrm{L}$ is equal to minus the minimum value F_{0} of F . Thus minus 2 times the logarithm of the likelihood ratio becones

$$
\begin{equation*}
U=2 F_{O}-N \log \mid S(m+n) \tag{20}
\end{equation*}
$$

If the model holds, U is distributed, in large samples, as x^{2} witr

$$
\begin{equation*}
d=\frac{1}{2}(m+n)(m+n+1)-r \tag{21}
\end{equation*}
$$

degrees of freedom, where, as before, r is the total number of independent parameters estimated under H_{0}.

4. The Special Case of No Errors of Measurement

If there are no errors of measurement in $\underset{\sim}{y}$ and $\underset{\sim}{x}$, the model (1) may be written

$$
\begin{equation*}
B \underset{\sim}{y}=\Gamma_{\sim}^{x}+\underset{\sim}{u} \tag{22}
\end{equation*}
$$

where we have written $\underset{\sim}{u}$ instead of $\underset{\sim}{\underset{\sim}{\mid}}$. In (22) we have altered the mciol slightly, compared to (1), (2) and (3), in that the mean vectors have been eliminated. This is no limitation, however, since constant terms in the equations can be handled by using an x-variable that has the value l for every observation. In this case, of course, $\underset{\sim}{S}$ shoula be the raw moment matrix inslead of the dispersion matrix.

This type of model has been st:died for many years by econometricians under the names of causal chains and interdeperdent systems (e.g., Wold is Jureer, 1953). The variables y and x are economic variables and in the econometric terminology, the variables are classified as exogenous and endogenous variables, the jdea beign that the exogenous variables are given from the outside and the endogenous variables are accounted for by the model. From a statistical point of $v \mathrm{v}_{\mathrm{s}}$ the distinction is rather between the independent or predetermined variables $\underset{\sim}{x}$ and the deperdent variables $\underset{\sim}{y}$. The residual $\underset{\sim}{u}$ represents a raidom disturbance term assumed to be uncorrelated with the predetermined variables. Observations ${\underset{\sim}{\alpha}}_{\alpha}$ and \mathcal{x}_{x} on $\underset{\sim}{y}$ and $\underset{\sim}{x}$ are usually in the form of a time series. Equation (2a) is usually referred to as the structural form of the model. When (22) is premultiplied by ${\underset{\sim}{B}}^{-1}$ one obtains the reduced form

$$
\begin{equation*}
\underset{\sim}{y}=\underset{\sim}{\Pi x}+{\underset{\sim}{u}}^{*} \tag{23}
\end{equation*}
$$

where $\underset{\sim}{I}={\underset{\sim}{B}}^{-1} \underset{\sim}{\Gamma}$ and ${\underset{\sim}{u}}^{*}={\underset{\sim}{B}}^{-1} \underset{\sim}{u} \cdot{\underset{\sim}{u}}^{*}$ is the vector of residuals in the reduced form.

In this case, Θ_{δ} and Θ_{\sim} in (4) are zero and therefore $\left|\sum_{\sim}\right|$ and Σ_{\sim}^{-1} in (7) can be written explicitly. It is readily verified that

$$
|\underset{\sim}{\Sigma}|=|\underset{\sim}{B}|^{-2}|\underset{\sim}{\Phi}| \mid \underset{\sim}{\underset{\sim}{\underset{\sim}{*}} \mid}
$$

and

Using these results, $\log L$ becomes

$$
\begin{aligned}
& \log L=-\frac{1}{2} N\left[\log |\underset{\sim}{\underset{\sim}{\mid}}|+\operatorname{tr}\left(\underset{\sim}{S} \underset{X X}{ }{\underset{\sim}{-1}}_{-1}\right)\right]-\underset{2}{\frac{1}{2}} N\left\{\log |\underset{\sim}{\underset{\sim}{*}}|-\log |\underset{\sim}{B}|^{2}\right.
\end{aligned}
$$

If $\$$ is unconstrained, maximizing $\log \mathrm{L}$ with respect to $\$$ Gives $\hat{\Phi}={\underset{\sim}{x x}}$, which is to be expected, since : in this case is the variancecovariance matrix of $\underset{\sim}{x}$. After the likelihood has been maximized with respect to $\underset{\sim}{ }$, the reduced likelihood is equal to a constant plus

$$
\begin{aligned}
& \log U^{*}=-\left.\frac{1}{2} N|\log | \underset{\sim}{W}|-\log | \underset{\sim}{B}\right|^{2}
\end{aligned}
$$

If also $\underset{\sim}{*}$ is uncorstrained, further simplification can be owtained, for then (24) is maxinized with respect to $\underset{\sim}{\forall}$, for given $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$, when $\underset{\sim}{\Psi}$ is equal to
so that the functio; to be maximized with respect to $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$ becomes a constant plus

$$
\begin{align*}
\log L^{* *} & =-\frac{1}{2} N\left[\log |\underset{\sim}{\underset{\sim}{\underset{\sim}{*}}}|-\log |\underset{\sim}{B}|^{2}\right] \\
& =-\frac{1}{2} N \log \left(|\underset{\sim}{\underset{\sim}{\mid}}| /|\underset{\sim}{B}|^{2}\right) \\
& =-\frac{1}{2} N \log \left|{\underset{\sim}{B}}^{-1} \underset{\sim}{\underset{\sim}{B}}{ }^{\prime}{ }^{-1}\right| \\
& =-\frac{1}{2} N \log |\underset{\sim}{*}| \tag{26}
\end{align*}
$$

where

In deriving (26), we started from the like:ihood function (7) based on the assumption of multinormality of V and $\underset{\sim}{x}$. Surh an assumptic.i may be very unrealistic in most economic applicavions. Koopmans, Rubin and Leipnik (1950) derived (24) and (26) from the assumption of multinormal residulas. $\underset{\sim}{u}$, which is probably a better assumption. However, the criteri in (26) has intuitive appeal regardless of distributional assumptions and connections with the maximum likelihood method. The matrix \downarrow in (c5) is the variance-covariance matrix of the residuals $\underset{\sim}{u}$ in che structural form (22)
and the matrix Ψ^{*} in (27) is the variance-covariance matrix $2 f$ the residuals u^{*} in the reduced form (23). Maximizing (26) is equivalent to minimizing $\left|{\underset{\sim}{*}}^{*}\right|$. Since $|\underset{\sim}{*}|$ is a generalizel variance, this method has been called the full information least generalized residual variance (FILGRV) method (see, e.g., Goldberger, 1964, Chapter 7). Several other estimation criteria based on $\underset{\sim}{*}{\underset{\sim}{*}}^{*}$ hare been proposed. Brown (1960) suggested the minimization of $\operatorname{tr}\left(\psi^{*}\right)$ and Zellner (1962) proposed the minimization of $\operatorname{tr}\left({\underset{\sim}{W}}^{-1}{\underset{\sim}{\underset{\sim}{*}}}^{*}\right)$
 Chapter 9) considered the family of estimation ariteria $\operatorname{tr}\left(\underset{\sim}{A} \Psi^{*}\right)$ with arbitrary positive definite weightirg matrices $\underset{\sim}{A}$ -

Since the original article by Koopmans, Mubin and Jeipnik (1950) several authors have contributed to the development of the FILGKV rethod (Charnoff \& Divinsky, 1953; Klein, 1953, 1969; Brown, 1959; Eisenpress, 1962; Eisenpress \& Greenstadt, 1964; Chow, 1968; Wegge, 1969). This paper will add another computational algorithm to those already existing.

Minimizing $\left|\psi^{*}\right|$ is equivalent to minitaizing

$$
\begin{equation*}
F=\log |\underset{\sim}{\underset{V}{ }}|-\log |\underset{\sim}{B}|^{2} \tag{28}
\end{equation*}
$$

Matrix derivatives of F with respect to $\underset{\sim}{3}$ and $\underset{\sim}{\Gamma}$ may be otained $b_{:}$ mat ix differentiation as shown in Aprendix $A 3$. 'he results are

$$
\begin{align*}
& \partial F / \partial \underset{\sim}{B}=2{\underset{\sim}{*}}^{-1}(\underset{\sim}{\mathrm{BS}} \underset{\mathrm{Yy}}{ } \cdot \underset{\sim}{\mathrm{I}} \underset{\mathrm{XY}}{ })-\underset{\sim}{\mathrm{B}^{1}}{ }^{-1} \tag{29}\\
& \partial F / \partial \Gamma=2{\underset{\sim}{x}}^{-1}\left(\Gamma S_{\sim x}-\underset{\sim}{B S}\right) \quad . \tag{20}
\end{align*}
$$

The function F is to be minirized with respect to the elements of $\underset{\sim}{B}$ and $\underset{\sim}{r}$ taking inte account that some elements are fixed and others are constrained in some way. As will be demonstrated in sections 5 and 6 ,
allowing for equalities among the elements of $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$, is not sufficient to handle scme ecoromic applications. Instead, more general constraints may be involved. Usually these constraints are linear but even models with nonlinear constraints have been studied (see, e.g., Klein, 1969). Such constraints can be handled as follows.

Let $\pi^{\prime}=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{q}\right)$ be the vector of all nonfixed elements in $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$. Each of these elements may be a known linear o: nonlinear function of $\underline{\sim}^{\prime}=\left(k_{1}, k_{2}, \ldots, k_{r}\right)$, the parameters to be estirated, i.e.,

$$
\begin{equation*}
\pi_{i}=r_{i}(\underset{\sim}{k}) \quad, \quad i=1,2, \ldots, q \tag{31}
\end{equation*}
$$

Then F is regarded as a function $H(k)$ of $k_{1}, k_{2}, \ldots, k_{r}$. The derivatives of k of first and second orcer are again given by (9) and (10), but now K is the matrix of order $q \times r$ whose ijth element is $\partial f_{i} / \partial x_{j}$. The function $H(\underset{\sim}{k})$ may be minimized by the Fletcher-Powell method as before. The advantage of this method compared to the more general one of the preceding section is that the function now contains many fewer parameters and the minimization is therefore faster. The Fletcher-Powell algorithm is relatively easy to apply ever in the nonlinear case and the iterations converge quadratically from an arbitrary starting print to a minimum of the function, although there is no guarantee that this is the absolute minimum if several local minime exist.

> 5. Analysis of Arti icial lata

The following hypothetical economic nodel is taken from rown (1959),

$$
\begin{equation*}
c=a_{0}+a_{1} W+a_{2} M+u_{1} \tag{5,0}
\end{equation*}
$$

$$
\begin{align*}
& W=b_{0}+b_{1} Y+b_{2} Y-1+u_{2} \tag{32b}\\
& W+I I+T_{g}=Y \tag{32c}\\
& C+E=Y
\end{align*}
$$

where the dependent variables are
$C=$ consumer expenditures
W = wage-salary bill
II = nonw ige income
$Y=$ total income, production and expenditure
and the predetermined variables are
$T_{g}=$ gov srnment net revenue
$E=$ all nonconsumer sjending on newly produced final goods
$Y_{-I}=$ value of Y lagged one time period
and where u_{1} ans u_{2} are random disturbance terms assumed to be uncorrelated with the predetermined variables. This hypothetical model will be used to illustrate soise of the rdeas and methods of the previous se tions.

To begin with we shall assume that the variables involved in this model
are not directly observed. Instead they ere assumed to represent true variables that can only be measured with errors. Such an assumption may not be unreasonable, as pointed out by Johnston (1963):

To be realistic we must recognize that most economic statisties contain errors of measurement, so that they are only approximations to the underlying "true" values. Such errors may arise because totals are estimated o. a sample basis or, even if a complete enumeration is attempted, errors and inaccuracies may creep in. Often, ton, the published statistics may represent an attempt to measure concepts which are different from those postulated in the theory (p. 148).

16

Converting the variables to deviations from mean values and writing \left.${\underset{\sim}{\eta}}^{\prime}=(C, W, \Pi, Y), \underset{\sim}{\xi}{ }^{\prime}=\left(T_{g}, E, Y-\right]\right)$ and $\zeta_{-}^{\prime}=\left(u_{1}, u_{2}, 0,0\right)$, model (32) may be written in the form of (1) as

$$
\left(\begin{array}{cccc}
1 & -a_{1} & -a & 0 \tag{33}\\
0 & 1 & 0 & -b \\
0 & 1 & 1 & -1 \\
1 & 0 & 0 & -1
\end{array}\right) \underset{\sim}{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & b_{2} \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right) \underset{\sim}{\xi}+\underset{\sim}{\zeta}
$$

There are 19 independent parameters in this model, ramely 4 in $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$, 6 in

3 in

$$
\dot{\psi}=\left[\begin{array}{llll}
\sigma^{2} & & \tag{35}\\
u_{1} & & \\
0 u_{1} u_{2} & \sigma_{u_{2}} & \\
0 & 0 & 0 & \\
0 & 0 & 0 & 0
\end{array}\right]
$$

and 6 in $\theta_{\delta}=\operatorname{di}\left(\theta_{T_{g}}, \theta_{E}, \theta_{Y}\right)$ and $\theta_{-1}=\operatorname{diag}\left(\theta_{C}, \theta_{W},{ }_{H}, \theta_{1}\right)$. lote that since (32c) and (32d) $\begin{array}{r}\text { Ere error-free equations, }\end{array} \underset{\sim}{-1}$ has the form (35) with zero variances and covariances for u_{3} and u_{l}. Also since Y_{-1} is Y lagged, we have assumed that the error variances in Y and Y_{-1} are the same. Therefore, ${\underset{\sim}{\theta}}_{\delta}$ and ${\underset{\sim}{\epsilon}}^{\theta_{E}}$ hare onsy 6 independent elements.

Data were generated from this model by assigning the following vaiues to each of the 19 purameters

$$
\begin{align*}
& a_{1}=0.8 \quad a_{2}=0.4 \quad b_{1}=0.3 \quad b_{2}=0.2 \\
& \sigma_{I_{g}}^{2}=1.0 \quad \sigma_{E}^{2}=2.0 \quad \sigma_{Y}^{2}=3.0 \\
& c_{T_{G}}=0.1 \quad \sigma_{T_{G} Y_{-1}}=0.2 \quad \sigma_{E Y-1}=0.1 \tag{36}\\
& \sigma_{u_{1}}^{2}=0.2 \quad \sigma_{u_{2}}^{2}=0.3 \quad \sigma_{u_{1} u_{2}}=0.1 \\
& \theta_{\mathrm{T}_{\mathrm{g}}}=0.4 \quad \theta_{\mathrm{E}}=0.6 \quad \theta_{\mathrm{Y}}=0.5 \\
& \theta_{C}=0.5 \quad \theta_{W}=0.6 \quad \theta_{\mathrm{II}}=0.9 \quad \theta_{\mathrm{Y}}=0.5
\end{align*}
$$

The resulting $\underset{\sim}{\sum}$, obtained from (4) and rourded to 3 decimals, is

C	$\begin{gathered} c \\ 4.599 \end{gathered}$	W	II	Y	T_{g}	E	Y_{-1}
W	2.481	2.069					
II	4.659	2.159	7.514				
Y	6.449	3.731	7.409	1.0.799			
T_{E}	-0.692	-0.138	-1.454	-0.592	1.160		
E	2.100	1.250	2.750	4.100	0.100	2.360	
Y_{-1}	0.442	0.763	-0.421	0.542	0.200	0.100	3.250

For the purpose of illustrating the estimation method of section 3 , the above matrix is regarded as a sample dispersion matrix S to be analyzed. The order of the vector $\underset{\sim}{\lambda}$ is 78 , since there are 78 elements in $\underset{\sim}{B}, \underset{\sim}{\Gamma}$, $\underset{\sim}{*} \underset{\sim}{\psi}, \Theta_{\delta}$ and θ_{ϵ} all together. Of these, 54 are fixed and 24 are ncafixed, so that π is of order 24. Because of the symretry of $\&$ ard the imposed equality of θ_{Y} and $\theta_{Y_{-1}}$, there are 19 independent parameters, so that the order of $\underline{\sim}$ is 19 .

The minimication of $H(\kappa)$ started at the point

$$
\begin{aligned}
& a_{1}=0.6, \quad a_{2}=0.3, \quad b_{1}=0.4, \quad b_{2}=0.1 \\
& \sigma_{T_{g}}^{2}=2.0, \quad \sigma_{E}^{2}=2.0, \quad \sigma_{Y_{-1}}^{2}=2.0 \\
& \sigma_{T_{G} E}=\sigma_{T_{G} Y}=\sigma_{E Y}=0.0 \\
& \sigma_{u_{1}}^{2}=0.3, \quad \sigma_{u_{2}}^{2}=0.3, \quad \sigma_{u_{1} u_{2}}=0.0 \\
& \theta_{T_{g}}=0.4, \quad \theta_{E}=0.6, \quad \theta_{Y_{-1}}=0.5 \\
& \theta_{C}=0.5, \quad \theta_{W}=0.6, \quad \theta_{I I}=0.9, \quad \theta_{Y}=0.5
\end{aligned}
$$

From this point seven steepest descent iterations were performed. Thereafter Fletcher-Powell iterations were used and it took 23 such iterations to reach a point where all derivatives were less than 0.00005 in absolute value. At this point, the solution was correct to four decimals and the $\underset{\sim}{\sum}$ in (37) was reproduced exactly. Thenty-three Fletcher-Powell iterations required for convergence is not considered excessive since no inforration about second-order derivatives was used and it takes at least 19 Fletcher-Fowell iterations to build ip an estimate of the matrix of second order derivatives.

We now consider model (32a-d) in the case when the variables are observed without errors of meacurement. Then the methci of section 3 cannot be applied directly since the two identities (32c) and (32d) irpla that $\underset{\sim}{\Sigma}$ is singular. Therefore, tho of the endogenous variables must be eliminated from the system. It seers most convenient to eliminata C and Y . When these variables have been eliminated, the structural equations become

$$
\left(\begin{array}{cc}
1-a_{1} & 1-a_{2} \tag{38}\\
1-b_{1} & -b_{1}
\end{array}\right)\binom{W}{\pi}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
b_{1} & 0 & b_{2}
\end{array}\right)\left(\begin{array}{l}
T_{g} \\
E \\
Y_{-1}
\end{array}\right)+\binom{u_{1}}{u_{2}}
$$

This system may be estimated by the method of section 4.
To illustrate the application of the estimation prosedure we use a dispersion matrix $\underset{\sim}{S}$ obtained from $\underset{\sim}{\Sigma}$ in (37) by suntracting the error variances from the diagonal elements and deleting rows and colums corresponding to C and Y. There are 6 nonfixed elements in $\underset{\sim}{B}$ and $\underset{\sim}{V}$, namely $\beta_{11}, \beta_{12}, \beta_{21}, \beta_{22}, \gamma_{21}$ and γ_{23}. These are the elements of the vector $\underset{\sim}{\pi}$. These elements are functicns of a_{1}, a_{i}, b_{1} and b_{2} defined by [compare equation (31)]

$$
\left(\begin{array}{l}
\beta_{11} \tag{39}\\
\beta_{12} \\
\beta_{21} \\
\beta_{22} \\
\gamma_{22} \\
\gamma_{23}
\end{array}\right)=\left[\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
a_{1} \\
a_{2} \\
b_{1} \\
b_{2}
\end{array}\right)+\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
$$

Thur the function F is a sunction of 4 indefendicnt paramete:s.
The function F was minimized using only Fletcher-Pr .ell iterations starting from the point

$$
a_{1}=0.6 \quad a_{2}=0.3 \quad b_{1}=0.4 \quad b_{2}=0.1
$$

The solntion point, found after 8 iterations, was, as expected, $a_{1}=0.8$, $b_{2}=0.4, b_{1}=0.3, b_{2}=0.2$ with

$$
{\underset{\sim}{\underset{\sim}{i}}}^{*}=\left(\begin{array}{ll}
0 . ? & 0.1 \\
0.1 & 0.3
\end{array}\right), \quad|\underset{\sim}{\underset{\sim}{*}}|=0.05
$$

6. An Economic Application

In this section we apply methods जrigRV and RFIGHN to a small economic model taken from the literature. The model is Klein's model o1 United States economy presented in Klein (1950, pp. 58-66):

Consumption:

$$
\begin{equation*}
c=a_{0}+a_{1} P+a_{2} P-3+a_{3} w+u_{1} \tag{40a}
\end{equation*}
$$

Investment:
$I=b_{0}+b_{i} P+b_{2} P_{-1}+b_{3}^{Y}-1+u_{2}$
Private wages:
$W^{*}=c_{0}+c_{1} E+c_{2} E_{-1}+c_{3} A+u_{3}$
Product:
$Y+T=C+I+G$
Incone:
$Y=P-W$
Capital:
$K=K_{-1}+I$
Wages: $\quad W=W^{*}+W^{* *}$
Private product: $\quad E=Y+T-W^{*} *$,
where the endogenous variables are
C $=$ consumption
$I=$ investment
$w^{*}=$ private wage biil
$P=$ profits
$Y=$ national income
$K=$ end-of-year capital stock
$W=$ total wage bill
$E=$ private rroduct
and the predetermined variables are tro lagged endogenous variailes P_{-1}, K_{-1} and E_{-1} and the exogenous variables
$i=$ unity
$W^{* *}=$ government wage bill
$T=$ indirect taxes
$G=$ government expenditures
$A=$ time in years from $19{ }^{2} 1$.
All variabjes except 1 and A are in billions of 1934 dollars.
This model contains eight dopendent variables and eight predetermined variablcs. There are three equations : slving residual terms. The other five equatious are identities. Using the five identities (40d) - (40h), P, Y, K, W and E may be solved for and substituted into (40a) (40c). This gives a model with ine following structural form

$$
\begin{aligned}
& \left(\begin{array}{rrrr}
1-a_{1} & -a_{1} & a_{1} & -a_{3} \\
-b_{1} & 1-b_{1} & & b_{1} \\
-c_{1} & -c_{1} & & 1
\end{array}\right)\left(\begin{array}{l}
c \\
1 \\
n_{1} *
\end{array}\right)
\end{aligned}
$$

There are cit ronfixed eiemens in $\underset{\sim}{B}$ and $[$. 'ihese are all 11 car functions of the 12 unknown ecefficients in (1+Ca-c) as follows

From annual observations, United States, 1921-1941 the following raw mower, matrices are obtained:

$$
S_{y y}=I\left(\begin{array}{ccc}
C & I & k^{*} \\
W^{*}
\end{array}\left(\begin{array}{ccc}
62165.6 z & & \\
1679,01 & 286.02 & \\
42076.78 & 1.217 .02 & 28560.86
\end{array}\right)\right.
$$

-22-								
	${\underset{\sim}{x y}}^{S_{y}}=$		$\begin{array}{ll}\text { C } & \\ 73.90 & \\ 77.33 & 10 \\ 33.68 & 1 \\ 77.70 & -1 \\ 29.37 & 6 \\ 67.38 & 50 \\ 15.25 & 18\end{array}$	I 26.60 03.80 60.40 +3.19 05.60 55.33 73.25 31.13	$\left.\begin{array}{c} W^{W} \\ 763.60 \\ 4044.07 \\ 5315.62 \\ 7922.45 \\ 460.90 \\ 12871.73 \\ 53470.56 \\ 45288.51 \end{array}\right)$,		
1 $W^{* *}$ T G	($/ \begin{gathered}1 \\ 21.00 \\ 107.50 \\ 142.90 \\ 208.20\end{gathered}$?** 636.87 789.27 1200.19	T 1054.95 1546.11	2369.94	A	P_{-1}	${ }^{\mathrm{K}}{ }_{-1}$	
${\underset{\sim x}{ }{ }^{\text {d }}}=\mathrm{A}$	0.00	238.00	176.00	421.70	770.00			
P_{-1}	343.90	1746.22	2348.48	3451.86	-11.90	5956.29		
K_{-1}	4210.40	21683.18	$28 ; 66.23$	42026.14	590.60	69073.54	846132.70	
${ }^{2}-1$	1217.70	6364.43	8436.53	12473.50			244984.77	72000.03

The following estimated model was obtained

$$
\begin{align*}
& C=18.318-0.229 P+0.384 P_{-1}+0.802 W+u_{1} \tag{43}\\
& I=27.278-0.797 P+1.051 P_{-1}-0.143 K_{-1}+u_{C} \\
& V_{*}=5.766+0.235 \mathrm{~F}+0.234 \mathrm{E}-1+0.234 \mathrm{~A}+u_{3}
\end{align*}
$$

with

$$
\hat{*}^{*}=\left(\begin{array}{rrr}
43.775 & \tag{1,4}\\
80.456 & 265.856 & \\
9.834 & 80.247 & 37.540
\end{array}\right)
$$

The standard erors of the estimated parameters may be obtained from a forma for the asymptotic variance-covariance matrix developed by Rothenberg and Leenders (1964).

7. The Special Case of No Residuals

When there are no residuals ir (1), the relations between I and ξ are exact. The joint distribution of η and $\underset{\sim}{\xi}$ is singular and of rank n.
 when there are fixed and constrained elements in $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$ or in ${ }_{\sim}^{Q}{\underset{\sim}{\delta}}_{\infty}$ and ${\underset{\sim}{e}}$, this model has to be estimated by the method of section 3 . This may be done by choosing $\psi=\underset{\sim}{0}$ and specifying the fixed elements and the constraints as described in that section.

The matrix $\underset{\sim}{\Sigma}$ can also be written

$$
\begin{equation*}
\Sigma=\underset{\sim}{N} \Lambda_{\sim}^{1}+\theta^{2}, \tag{45}
\end{equation*}
$$

where

$$
\hat{\sim}=\binom{{\underset{\sim}{B}}^{-1} \underset{\sim}{\Gamma}}{\underset{\sim}{I}} \quad \text { and } \quad \underset{\sim}{\otimes}=\left(\begin{array}{ll}
\Theta_{\epsilon} & \underset{\sim}{0} \tag{46}\\
0 & {\underset{\sigma}{\delta}}^{Q}
\end{array}\right)
$$

from which it is seen that the mode? is identical to a certain restricted factor analysis model. Several special cases will now be consideret.

If $\underset{\sim}{B}=I$ and $\underset{\sim}{\Gamma}$ is unconstrained, i.e., ail elerents of $\underset{\sim}{\Gamma}$ are regerded as free parameters, model (45) is formally equivalent to an wirestricted factor wrdel (idreskor, 1969). The matrix a in (46) ray be obtained f. m any $*$ of order $(m+n) \times n$ satisfying

$$
\begin{equation*}
\underset{\sim}{\Sigma}={\underset{\sim}{*}}_{\sim}^{*}{\underset{\sim}{*}}^{1}+{\underset{\sim}{\Theta}}^{2} \tag{47}
\end{equation*}
$$

by a transformation of ${\underset{\sim}{N}}^{*}$ to a reference variables solut; on where the x^{\prime} s are used as reference variables. Maximum likelihoodestimates of ${\underset{\sim}{*}}_{*}^{*}$ and may be obtained by the method of Joreskog (1967a,b) which also yields a largc sample x^{2} test of goodness of fit. Let the estimate of $\xrightarrow[\sim]{*}^{*}$ be partitioned as

$$
\hat{i}^{*}=\left[\begin{array}{c}
\hat{\hat{N}_{3}^{*}} \tag{48}\\
\hat{\hat{\lambda}_{2}^{*}}
\end{array}\right],
$$

where $\hat{\sim}_{\sim}^{*}$ is of order $m x n$ and $\hat{\sim}_{2}^{*}$ of order $n \times n$. Then the maximum likelihood estimatcs of $\underset{\sim}{\Gamma}$ and $\underset{\sim}{\Phi}$ are

$$
\begin{align*}
& \hat{\Gamma}=\hat{\lambda}_{\sim}^{*} \hat{\lambda}_{\sim}^{*}{ }^{-1} \tag{49}\\
& \underset{\sim}{\hat{\Phi}}=\hat{\lambda}_{\sim}^{*} \hat{\sim}_{-}^{*} \tag{50}
\end{align*}
$$

If $\underset{\sim}{E}=I$ and $\underset{\sim}{I}$ is constrained to have some fixed elements while the remaining elements in Γ are free parameters, model (45) is formally equivalent to a restricted factor model in the sense of J breskog (1969). This rodel may be estirated by tre procedure described in the same paper and, in larpe samples, standard errors of the estimates and a goodness of fit test can also be octaincd. A computer program for this procedure is available (abreskog \& Gruveeus: 1967).

A more general ca:e is when $\underset{\sim}{B}$ is lower triangular. The structural equation s:'stem for the true variates is then a causal chain. In general such a causal chain ray he estimated by the rethod described in section 3
of the paper, though there may be simpler methods. One example occurs when the system is normalized by fixing one eiement ' n each row of $\underset{\sim}{r}$ to urity and $\underset{\sim}{B}$ has the form

$$
\underset{\sim}{B}=\left[\begin{array}{llll}
\beta_{11} & 0 & & 0 \\
\beta_{21} & \beta_{22} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
\beta_{m 1} & \beta_{m 2} & & \beta_{m m}
\end{array}\right]
$$

where all the β^{\prime} 's are free parameters. Then there is a one-to-one transformation between the free parameters of $\underset{\sim}{B}$ and the free elements of $\underset{\sim}{A}={\underset{\sim}{B}}^{-1}$. One may therefore estimate $\underset{\sim}{A}$ instead of $\underset{\sim}{B}$. In this ease, the variance-covarience matrix \sum is of the form

$$
\begin{equation*}
\underset{\sim}{\Sigma}={\underset{\sim}{R}}^{*} \underset{\sim}{\Phi} \Lambda_{\sim}^{\prime}{\underset{\sim}{*}}^{*}+{\underset{\sim}{\theta}}^{2} \tag{51}
\end{equation*}
$$

where

Model (51) is a special case of a general model for covariance structures developed by toreskog (1970) and may be estimated using tie computer proera:
 and Q_{E} may contain fixed paramoters and even paremeters constrained to de equal in grcaps. The computer program gives raximurf likelihood estirates of
 standerd errors of these estlmates and a ter: of overall gcodness o. fit cf the rodel can also be obtained.

More generally, the above mentioned method may be used whenever \sum_{\sim} can be written in the form (51) such that there is a one-to-one correspondence between the free parameters in $\underset{\sim}{B}$ and $\underset{\sim}{\Gamma}$ and the distinct free elements in $\underset{\sim}{B}$ and $\underset{\sim}{\wedge}$. For a less trivial example, see Jöreskog (1970 , section 2.6).

3. A Psychological Application

In this section we consider a simplified nodel for the prediction of achievements in mathematics (M) and science (S) at different grade levels. To estimate the model we make use of lungitudinal data from a growth study conducted at Educational Testing Service (Anderson \& Yaier, 1963; Hilton, 2969). In this study a nationwide sample of fifth graders was tested in 1961 and then agair in 1963, 1965 and 1967 as sevenin, ninth and eleventh graders, respectively. The test scores emploved in this model are the verbal (V) and quantitative (Q) parts of SCAT (Scholastic Aptitude Test) obtained in 1961 and the achievement tests in mathematics (M_{5}, M_{7}, M_{9}, $\left.M_{11}\right)$ and science $\left(S_{5}, S_{7}, S_{c}, S_{11}\right)$ obtained in 1961, 1963, 1965, and 1967, respectively. The achievent at tests have been scaled so that the unit of measurement is approximately the same at all grade levels.

The model is depicted in Figure $?$, where $V, Q, M_{5}, i_{7}, \quad M_{9}$, $U_{11}, S_{5}, S_{7}, S_{9}$ and $S_{1 l}$ denote the true scores of the tests and $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{8}$ the corresronding residuals. The wolel for the true scores is

$$
\begin{align*}
& n_{5}=a_{1} v+a_{2} Q^{2}+\zeta_{1} \tag{53:}\\
& s_{5}=b_{1} v+b_{2} Q+\zeta_{2} \tag{530}
\end{align*}
$$

$$
\begin{align*}
& M_{7}=c_{1} M_{5}+\zeta_{3} \tag{53c}\\
& S_{7}=d_{1} S_{5}+d_{2} M_{7}+\zeta_{4} \tag{53d}\\
& M_{9}=e_{1} M_{7}+\zeta_{5} \tag{53e}\\
& S_{9}=f_{1} S_{7}+f_{2} M_{9}+\zeta_{6} \tag{53f}\\
& M_{11}=g_{1} M_{9}+\zeta_{7} \tag{53E}\\
& S_{11}=h_{1} S_{9}+h_{2} M_{11}+\zeta_{8} \tag{53h}
\end{align*}
$$

This model postulates the major influences of a student's achievement in mathematics and science at various grade levels. At grade 5 the main determinants of a student's achieverients are his verbal and quantitative abilities at that stage. At higher grade levels, however, the achievements are mainly determined by his achievements ir the earlier grades. 'Thus, achievements in mathematics in grade i is determined mainly by the achievements in mathematics in grade i-2, whereas achievements in science in grade i is deter tined mainly by the achievements in science in grade $\mathbf{i}-2$ and in mathematics in grade $1, i=7,9,11$.

The structural form of this model is

$$
\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-c_{1} & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & -d_{1} & -d_{2} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -e_{1} & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -f_{1} & -f_{2} & i & 0 & 0 \\
0 & 0 & 0 & 0 & -e_{1} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & -h_{1} & -h_{2} & 1
\end{array}\right)\left(\begin{array}{l}
s_{5} \\
s_{5} \\
M_{7} \\
s_{7} \\
N_{9} \\
s_{9} \\
n_{11} \\
s_{11}
\end{array}\right)=\left[\begin{array}{cc}
a_{1} & a_{2} \\
b_{1} & b_{2} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\binom{v}{c}+\left(\begin{array}{l}
s_{1} \\
s_{2} \\
\zeta_{3} \\
s_{1} \\
\zeta_{5} \\
c_{6} \\
\zeta_{7} \\
s_{3}
\end{array}\right) \cdot
$$

It is seen that this model is a causal chain. The model can be estimated $b:$ the method described in section 3, provided sone assumption is made about the intercorrelations of residuals $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{8}$. Without such an assumption the model is not identified. We have chosen to make the assumption that all residuais are uncorrelated except. ζ_{I} and ζ_{2}. This assumption does not seem to be too unrealistic.

The data that we use consist of a rardon sample of 730 boys taken from all. the boys that tock all tests at all occasions. The variance-covariance matrices are

	${ }_{30}{ }_{500}$	S_{5}	M_{7}	S_{7}	M_{9}	So	${ }_{11}$	S_{11}
	130.690 115.645							
S_{5}	115.645	179.617						
M_{7}	116.162	123.838	193.537					
. s_{7}	90.709	214.36%	120.426	148. $\div 8$				
- $\mathrm{s}_{\mathrm{yy}}=\mathrm{m}_{9}$	119.564	125.22,	155.883	1.20 .492	2.15 .894			
S_{9}	104.430	135.07 ${ }^{4}$	137.827	133.231	159.783	218.067		
M_{11}	119.712	126.470	149.930	112.218	175.497	149.045	264.071	
S_{11}	90.916	176.950	117.439	109.187	233.839	147.115	124.3.218	1.90.763

 $S_{\sim X X}=V\left(\begin{array}{cc}V & Q \\ Q & Q \\ 73.014 & 0.751\end{array}\right) \quad$.

The estirated rodel is

$$
\begin{align*}
& \mathrm{s}_{5}=0.640 \mathrm{~V}+0.415 Q+\hat{S}_{1} \tag{5,9}\\
& s_{5}=1.296 \mathrm{~V}-0.175 \mathrm{Q}+\hat{S}_{2} \tag{351}
\end{align*}
$$

$$
n_{7}=1.09 \mathrm{~m}_{5}+B_{3}
$$

-29-

$$
\begin{align*}
& s_{7}=0.325 s_{5}+0.493 M_{7}+\hat{\zeta}_{4} \tag{55d}\\
& M_{9}=1.027 \mathrm{M}_{7}+\hat{\zeta}_{5} \tag{55e}\\
& s_{9}=0.703 \mathrm{~s}_{7}+0.383 \mathrm{M}_{9}+\hat{\zeta}_{6} \tag{55f}\\
& M_{11}=0.951 \mathrm{M}_{9}+\hat{\zeta}_{7} \tag{55g}\\
& s_{11}=0.658 \mathrm{~s}_{9}+0.184 \mathrm{M}_{11}+\hat{\zeta}_{8} \tag{55h}
\end{align*}
$$

The estimated variance-covariance matrix of the true scores V and Q is

$$
\underset{\sim}{\Phi}=\begin{array}{cc}
V & Q \\
Q
\end{array}\left(\begin{array}{c}
105.48 \\
73.95
\end{array}\right]
$$

Estimated residual variances and error variances for each measure are given below

Measure	Residual Variance	Error Variance
V	--	33.1
Q	-	4.4
M_{5}	10.0	25.4
S_{5}	22.5	11.8
M_{7}	26.4	40.3
S_{7}	29.5	24.3
M_{9}	25.2	29.3
S_{9}	28.5	36.1
M_{11}	75.7	18.8
S_{11}	20.0	47.7

The astimated correlation between ζ_{1} and ζ_{2} is 0.17 . The estimated reduced form for the true scores is

$$
\begin{align*}
& M_{5}=0.640 \mathrm{~V}+0.415 \mathrm{Q}+\hat{\zeta}_{1}^{*} \tag{56a}\\
& \mathrm{~S}_{5}=1.296 \mathrm{~V}-0.175 \mathrm{Q}+\hat{\zeta}_{2}^{*} \tag{56b}\\
& \mathrm{M}_{7}=0.702 \mathrm{~V}+0.455 \mathrm{Q}+\hat{\zeta}_{3}^{*} \tag{560}\\
& \mathrm{~S}_{7}=0.767 \mathrm{~V}+0.167 \mathrm{Q}+\hat{\zeta}_{4}^{*} \tag{56d}\\
& M_{9}=0.721 \mathrm{~V}+0.167 \mathrm{Q}+\hat{\zeta}_{5}^{*} \tag{56e}\\
& \mathrm{~S}_{9}=0.815 \mathrm{~V}+0.296 \mathrm{Q}+\hat{\zeta}_{6}^{*} \tag{56f}\\
& M_{21}=0.686 \mathrm{~V}+0.444 \mathrm{Q}+\hat{\zeta}_{7}^{*} \tag{56E}\\
& S_{11}=0.663 \mathrm{~V}+0.277 \mathrm{Q}+\hat{\zeta}_{8}^{*} \tag{56h}
\end{align*}
$$

The relative variance contributions of V and Q, the residual ζ^{*} and the error, to each test's total variance are shown below:

Weasure	V and Q	Residual	Frror
M_{5}	0.73	0.03	0.19
$\mathrm{~S}_{5}$	0.78	0.15	0.07
M_{7}	0.59	0.20	0.21
$\mathrm{~S}_{7}$	0.56	0.28	0.16
M_{9}	0.56	0.30	0.14
$\mathrm{~S}_{9}$	0.52	0.32	0.16
M_{11}	0.42	0.51	0.07
$\mathrm{~S}_{21}$	0.42	0.33	0.25

It is not easy to give a clear-cut interpretation of these results. Inspecting first the equations (55c), (55e) and (55g), it is scen that a wit increase in M_{i-2} tends to have a smaller effect on M_{i} the larger i is. This agrees with the fact that the growth curves in ratheratics "flattens" out at the higher grade levels. One would expect that the coeificient E_{1} in (55 g), like c_{1} in (50 c) and e_{1} in (55e). rould be greater than one, since, in general, for these data, the correlation of status, M_{i-2}, and gain, $M_{i}-M_{i-2}$, are positive althourh hsually very smail. However, the large residual variance $\hat{\xi}_{7}$ suggests that M_{9} alone is not sufficient to account for M_{11}. This is probably due to the fact that; mathematics courses at the higher grades change character fro: being mainly "erithemetic computation" to involving more "Elgebraic reasoning."

Inspecting next the equations (55d), (55f) and (55h) descriving scien?e achievements, it is seen thet the influence of matheratics on science tends to decrease at the higher grades. This is natural since science courses in the lorer rmedes are based mainly on "Logical rearonin;" whereas in the higher erades they are based on "remorizinc; of facts." fine effect oi science achieverents on science two : eners later iinst increses and then decreases. \quad ais in mobaby breause the science enuses cacial-
 the science test at the lorer erades reasures some kird of overil "science knoriedge."

Whatever ray be the west interuretetions of these results, the eralle cerves th illustrate that it is rossible to have both cravo in equaions and errors in variables ard stidl have an estirab?e model.

References

Anderson, T. W. An introduction to multivariate statistical analysis. New York: Wiley, 1958.

Arderson, S. B., \& Maier, M. H. 34,000 pupils and how they grew. Iournal of Teacher Education, 1963, 14, 212.-216.

Blalock, H. M. Causal inferences in nonexperimental research. Chapel Hill, N. C.: University of North Carolina Press, 1964.

Frown, T. M. Simpified full aximum likelihood and comparative structural estimates. Econometrica, 1959, 27, 638-6j3.

Brown, T. M. Simultaneous least squares: a distribution free method c " equation system structure estimation. International Economic Fer 1960, 1, 173-191.

Chernoff, H., \& Divinsky, N. The computation of maximum-likelihocd es: i of linear structural equations. In w. C. Hoca \& T. C. Koopnans (Studies in econonetric method, Cowles Comission sonograph 14. Ifo Wiley, 1953. Pp. 236-269.

Cnow, G. C. Thu metnods of compdeing full-information maximem likeli: estimates in simultaneous stociastic equations. International Fc Review, 1968, 2, 100-112.

Eisenpress, H, Note on the comutation of full-information maximum-1ǐ. . estimates of coefficients of a simultaneous system. Econometriot $30,31+3-348$.

Eisenprens, H. : Ereenstadt, A. The estiration of non-linerv econo.. sistriss. Fcorometrics, 1066 , 31, $851-96:$

Fletcher, R., \& Powell, M. J. D. A rapidly convergent descent method for mininization. The Computer Journal, 1963, 6, 163-163.

Goldberger, A. S. Econometric theory. New York: Wiley, 1964.
Gruvaeus, G., \& Jtreskog, K. G. A computer program for minimizing a function of several variables. Research Bulletir 70-14. Princeton, N. J.: Educational Testing Service, 1970.

Hilton, T. L. Growth study annotated bibliography. Progress Report 69-1l. Princeton, N. J.: Educational Testing Sesvice, 1969.

Johnston, J. Econometric methods. New York: McGraw-Hill, 1963.
JBreskog, K. G. Some contributions to maximum likflihood factor analysis. Psychometrika, 1967, 32, 443-482. (a)

JHreskog, K. G. UMLFA--A computer prograrn for unrestricted maximum likelihood factor analysis. Research Remorandum 66-20. Princeton, N. さ.: Educational Testing Service, revised edition, 1967. (b)
ïreskog, K. G. A general approach to confimatory maximum Jikelihood factor analysis. Psychometrika, 1969, 34, 183-202.

JHreskog. K. G. A general method for analysis of covariance structures. Biometrika, 1970, 57, 239-251.

JHeskog, K. G., \& Gruveeus, G. HiffA-A computer program for restricted raximum likelihood factor analysis. Research Verorandum 6?-21. Frinceton: ?. e.: Eduational Testing Servire. 1967.
foreskog, K. G., Gruvaeus, G. T., \&e van Thillo, M. AOOVS-A general computer program for analysis of covariance stracturcs. Research Bulletin 70-15. Princeton, $A . \therefore$ E Fiacationgl Testirg Service, 1070.

35

JOreskog, K. G., \& van Thillo, M. LISREI-A general computer program fo: estimating linear structural relationships. Research Bulleti'i $70-00$. Princeton, N. J.: Educational Testing Service, in preparation.

Klein, L. R. Economic fluctuations in the United States, 1921-1941, Cowles Comnission Monograph 11. New York: Wiley, 1950.

Klein, L. R. A textbook of econometrics. Evanston: Row, Peterson, 1953.
Klein, L. R. Estimation of interdependent systems ir macroeconometrics. Econometrice, 1969, 37, 171-192.

Koopmans, T. C., Rubin, H., \& Leipnik, F. B. Measuring the equation systems of dynamic economics. In T. C. Koopmans (Ed.), Statistical inference in dynamic economic models, Cowles Comission Nonogreph 10. New York: Wiley, 1950. Pp. 5j-237.

Ealinvaud, E. Statistical methods of econometrics. Cnicago: Rand-i.cilally, 1966.

Fothenberg, T. G., \& Lefrders, C. T. Ef.icient estimation of simultareous equation systeris. Fconometrica, 1964, 32, 5i-76.

Turner, \because. E., \& Stevens, C. D. The regression aralysis of causal paths. Biometrics, 1959, 15, 236-258.

Vegge, L. L. A family of functional iterations and the solution of raxiram likelihood estiration equations. Econometrica, 1969, 3才, 122-130. Werts, $C . E ., \&$ Linn, R. L. Patin analysis: psycholcelcal evmples. Esychological Bulletin, 1970, 74 (3), 193-212.

Wold, H., fo Jureen, L. Demand anslysis. Ne: York: wiley, i953. Zeliner, A. An efficient methed of estimatine seemirely uncelnted regressoms and tests for aferegtion bits, Iournal of the Trevican Statistical Association, 1962, 57, 348-368.

A. Agpendices or Mathematical Derivations

Al. Matrix Derivatives of Function F in Section 3

The function is

$$
\begin{equation*}
F=\log \left|\Sigma \Sigma_{\sim}\right|+\operatorname{tr}\left(\underset{\sim}{S} \Sigma_{\sim}^{-1}\right) \tag{AI}
\end{equation*}
$$

which is regarded as a function of $\underset{\sim}{B}, \underset{\sim}{\Gamma}, \underset{\sim}{\Phi}, \underset{\sim}{\|}, \underset{\sim}{\delta}, \underset{\sim}{\Theta} \in$ defined by (4). To derive the matrix derivaives we shali make use of matrix differentials. In general, $d \underset{\sim}{X}=\left(d x_{i j}\right)$ will denote a matrix of differentialis an α° if F is a runction of X and $d F=\operatorname{tr}\left(\underset{\sim}{C d X}{\underset{\sim}{x}}^{\prime}\right)$ then $\partial F / \partial X=\underset{\sim}{C}$.

Writing $\underset{\sim}{A}={\underset{\sim}{D}}^{-1}$ and $\underset{\sim}{D}={\underset{\sim}{B}}^{-1} \underset{\sim}{\Gamma}=\underset{\sim}{A} \underset{\sim}{x}$ we have

$$
\begin{equation*}
\dot{d A}=-{\underset{\sim}{B}}^{-1} d \underset{\sim}{B}{ }^{-1}=-\underset{\sim}{A d B A} \tag{A2}
\end{equation*}
$$

$d \underset{\sim}{D}={\underset{B}{ }}^{-1} d \underset{\sim}{\Gamma}+d \underset{\sim}{\Gamma}$
$=\underset{\sim}{A d \Gamma} \underset{\sim}{A}-\underset{\sim}{A B A \Gamma}$
$=A d \Gamma-A B D \quad$.

Furthr lue, since in general,

$$
\operatorname{lng} X X \mid=\operatorname{tr}\left(X_{\sim}^{-1} \underset{\sim}{X}\right)
$$

and

$$
\begin{aligned}
\operatorname{dtr}\left(\underset{\sim}{A X^{-1}}\right) & =\operatorname{ir}(\underset{\sim}{A d X}) \\
& =-\operatorname{tr}\left(A X^{-1} d X X^{-1}\right) \\
& =-\operatorname{tr}\left(X^{-1} A X^{-1} d X\right)
\end{aligned}
$$

$$
-36-
$$

we obtain from (Al),

$$
\begin{align*}
& d F=2 \log \left|\Sigma \Sigma_{\sim}\right|+\operatorname{dtr}\left(\underset{\sim}{D} \Sigma^{-1}\right) \\
& =\operatorname{tr}\left(\sum_{\sim}^{-1} d \sum_{\sim}\right)-\operatorname{tr}\left(\Sigma_{\sim}^{-1} \underset{\sim}{\underset{\sim}{\Sigma}}{ }_{\sim}^{-1} \sum_{\sim} \Sigma_{\sim}\right) \\
& =\operatorname{tr}\left[\left(\Sigma_{\sim}^{-1}-{\underset{\sim}{\sim}}^{-1} \underset{\sim}{S_{\sim}^{-1}}\right) d \Sigma\right] \\
& =\operatorname{tr}(\Omega a \Sigma) \\
& =\operatorname{tr}\left(\Omega_{\sim y y} d \sum_{\sim y y}+\Omega_{-y x} d \sum_{\sim x y}+\Omega_{\sim x y} d \sum_{-y x}+\Omega_{\sim x x} d \sum_{-x x}\right) \quad, \tag{+}
\end{align*}
$$

where $\Omega \sim$ is defined by (12) and $d \underset{\sim}{n}$ is partitioned the semre way as Ω in (12).

From (4) and the definitions of $\underset{\sim}{A}$ and $\underset{\sim}{D}$ we have

$$
\begin{align*}
& \sum_{\sim y y}=D^{\prime} D^{\prime}+A_{X}^{\prime} A^{\prime}+Q_{E}^{2} \tag{A5}\\
& \sum_{X Y}=\sum_{-y x}^{\prime}=Q D^{\prime} \\
& \sum_{x X}=E+Q_{\delta}^{2} \tag{AT}
\end{align*}
$$

from which we obtain

$$
\begin{align*}
& \left.+2 \theta^{d}\right) \tag{18}
\end{align*}
$$

$$
\begin{align*}
& \mathrm{d} \xi_{X W}=\hat{a}:+2 \sigma_{i} \quad . \tag{i:0}
\end{align*}
$$

Substitution of $d A$ and $d D$ from ($A 2$) and ($A 3$) int, ($A 8$) and ($A 9$) gives

$$
\begin{aligned}
& \text { + AdrvD' - AdBDSD' }
\end{aligned}
$$

Substitution of (All), (Ale.) and ($A_{i} O$) into (A_{i}), not ng atat tr ($C^{\prime} d X$) $=\operatorname{tr}(\underset{\sim}{X} \underset{\sim}{C})=\operatorname{tr}\left(\underset{\sim}{C d}{\underset{\sim}{x}}^{*}\right)$ and collecting terws, shows that the matrices ultiplying
 equations (14), (25), (17), (18) and (19) respectively. Tlese are therefore the corresponding natrix derivatives.

AQ. Information Matix for the Gereral Model of Se tion 3

In this section he shall prove a general theorem concerring the expected second-order derivatives of any function of the tife (8) and show hos this theoren can be alplien to compte all the elements of the infomation antrie: (12).

We first wrove the folloning

distribution of the elements of $\Omega=\underbrace{\Sigma^{-1}\left(\sum_{\sim}-\underset{\sim}{S}\right) \Sigma_{\sim}^{-1} \text { is multivariate }}$ normal with means zero and variances and covariances eiven by

$$
\begin{equation*}
N \varepsilon\left(\omega_{\alpha \beta}^{\omega_{\mu v}}\right)=\sigma^{\alpha_{\mu} \beta v}+\sigma^{\alpha \nu} \sigma_{\alpha} \tag{A13}
\end{equation*}
$$

Proof: The proof follows immediately by multiplying $\omega_{\alpha \beta}=\sum_{g} \sum \sigma^{\alpha g}\left(\sigma_{g h}-{ }_{g}{ }_{g h}\right) \sigma^{i n}$ and $\omega_{\mu v}=\sum_{i j} \sum_{i} \sigma^{\mu i}\left(\sigma_{i, j}-s_{i j}\right) \sigma^{i v}$ and using the fret that the asymptotic vi iances and covariances of $\underset{\sim}{S}$ are fiven by

$$
\operatorname{Ne}\left[\left(\sigma_{g h}-s_{g h}\right)\left(\sigma_{i, j}-s_{i j}\right)\right]==\sigma_{g i} \sigma_{h j}+\sigma_{g j} \sigma_{h i}
$$

(see e.g., Anderson, Theorem 4.2.4).
We can now prove the fellowing general theorem.
Theorem: Under the conditions of the above lema let the eleaents of \sum be
functions of two parameter matrices $\underset{\sim}{N}=\left(1_{\mathrm{gh}}\right)$ and $\underset{\sim}{N}=\left(v_{i, i}\right)$ and
let $F(M, N)=\frac{1}{2} N\left[\log |\Sigma|+\operatorname{tr}\left(S \Sigma_{\sim}^{-l}\right)\right]$ with $O F / O M=W A S B$ and $\partial F / O M=M O D \cdot \operatorname{Then}$ we have essmptotically

 is assumed that every repeated subscript is to be sumen over, re have

It should be noted that the theorem is quite gencral in that woth $!$ and $\underset{\sim}{N}$ may be row or colum vectors or scalars and $\underset{\sim}{M}$ and $\underset{\sim}{i}$ may be identical in which case, of course, $\underset{\sim}{A} \equiv \underset{\sim}{C}$ and $\underset{\sim}{B} \equiv \underset{\sim}{D}$.

We now show how the abov, theorem can be applied repeatedly to corpute all the elements of the information matrix (12). To do so we write the derivatives (14) - (19) in the form required by the theorer.

$$
\text { Let } \begin{array}{rl}
A & A={\underset{\sim}{3}}^{-1} \text { and } \underset{\sim}{D}={\underset{\sim}{B}}^{-1} \underset{\sim}{\Gamma} \text {, as before, and } \\
\underset{\sim}{T}[m \times(m+n)]=\left[\begin{array}{ll}
A^{\prime} & \underset{\sim}{0}
\end{array}\right] \tag{A15}
\end{array}
$$

$$
\underset{\sim}{P}\left[\left(r_{1}+n\right) x m\right]=\left[\begin{array}{l}
D^{2} D^{\prime}+A N^{\prime} A^{r} \tag{A16}\\
\cdots \sim_{\sim}^{\prime} \\
\vdots D^{\prime}
\end{array}\right]
$$

$$
\underset{\sim}{\square}[(n+n) \times n]=\left(\begin{array}{l}
D i \tag{117}\\
\vdots \\
i
\end{array}\right)
$$

$$
\underline{E}[(r+n) \times n]=\left(\begin{array}{l}
D \tag{A18}\\
I \\
I
\end{array}\right)
$$

Then it is readily veriricd that

$$
\begin{align*}
& \mathrm{C} F / \mathrm{OH}=-\mathrm{HIRP} \tag{12.1}\\
& O F / O \Gamma=1 \pi N Q \tag{mo}\\
& 0 F / \therefore=B G R \tag{0,0}
\end{align*}
$$

$$
\begin{aligned}
& =\left(a_{g \alpha} \sigma^{\alpha \alpha_{\mu}} c_{i \mu}\right)\left(b_{\beta h} \sigma^{\beta v_{j}} d_{\nu j}\right)+\left(a_{\xi \delta \alpha} \sigma^{\alpha \nu}{ }_{d_{\nu j}}\right)\left(b_{\beta h} \sigma^{\beta \mu}{ }_{c_{i \mu}}\right) \\
& =\left(A \Sigma^{-1} C^{\prime}\right)_{g i}\left(B^{\prime} \Sigma^{-1} D\right)_{h j}+\left(A \Sigma^{-1} D\right)_{g j}\left(B^{\prime} \Sigma^{-1} C^{+}\right)_{h i} .
\end{aligned}
$$

$$
-40
$$

$$
\begin{equation*}
\partial F / \partial \theta=N 0 \tag{A23}
\end{equation*}
$$

In the last equation we have wmbined (I8) and (19) using $\underset{\sim}{9}=\left(\begin{array}{ll}\theta_{\delta} & 0 \\ 0 & 9 \\ 0 & 9\end{array}\right)$.

A3. Matrix Derivatives of Tunction F in Section I_{4}

The function is defined by

$$
\begin{equation*}
F=\log |\underset{\sim}{\Psi}|-i o g|\underset{\sim}{B}|^{2}, \tag{i}
\end{equation*}
$$

where

One finds inmediately that

$$
\begin{aligned}
& d F=\operatorname{tr}\left(\underset{\sim}{\underset{\sim}{1}}{ }^{-1} \underset{\sim}{\psi}\right)-2 \operatorname{tr}\left({\underset{\sim}{B}}^{-1} \underset{\sim}{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\operatorname{str}\left({\underset{\sim}{B}}^{-1} d B\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \operatorname{tr}\left\{\left[\because_{\sim}^{-1}\left(E S_{y y}-\underset{\sim}{X Y}\right)-B^{-1} \operatorname{jan}_{\sim}\right\}\right.
\end{aligned}
$$

so that the derivatives $\omega F / \underset{\sim}{p}$ and $\partial F / \underset{\sim}{\rho}$ are those civen $u ;(x)$ and (30).

[^0]: *This research has been surported in part by erant NSF-GB-12959 fron the liational Science Foundation. The author wishes to thank Professor Arthur Goldberger for his comments on tre earlier draft of the paper and :arielle van Thillo, who wrote the computer programs, checked the ratheratical dorivations and gave other valuable assistance throughout the work.

